Interspeech 2018
End-to-End based ASR
Part 1-2

Lu Huang
2018-09-19
Papers for Mandarin Chinese ASR

• Alibaba: Acoustic Modeling with DFSMN-CTC and Joint CTC-CE Learning

• Bo Xu: Extending Recurrent Neural Aligner for Streaming End-to-End Speech Recognition in Mandarin

• Bo Xu: Syllable-Based Sequence-to-Sequence Speech Recognition with the Transformer in Mandarin Chinese
Acoustic Modeling with DFSMN-CTC and Joint CTC-CE Learning

Shiliang Zhang, Ming Lei

Machine Intelligence Technology, Alibaba Group
{sly.zsl, lm86501}@alibaba-inc.com
Motivations

• CTC based ASR system’s latency
 • CTC: an output target is detected can be arbitrarily delayed
 • (B)LSTM: a huge amount of memory when the sequence is very long; BLSTM’s latency

• How to:
 • Using DFSMN to replace (B)LSTM
 • Joint CTC-CE training to improve stability
CTC

\[
\begin{align*}
F(a, -, b, c, -, -) \\
F(\ldots, a, -, b, c) \\
F(a, b, b, b, c, c) \\
F(a, -, b, -, c, c)
\end{align*}
\] => \((a, b, c)\)

\[
P(z|x) = \sum_{\pi \in \Phi(z)} P(\pi|x)
\]

\[
\mathcal{L}_{ctc}(x) = -\log P(z|x)
\]
CTC training

• CTC training is not stable

• How to:
 • by using **two output layers** with CTC and the conventional CE loss during the training
 • **initializing from a CE** loss pre-trained model.

• It is found that even with CE pre-trained networks as initialization, CTC training can sometime still fail to converge.

• CTC training with CI-Phones is more stable than CD-Phones.
 • The searching space of CD-Phones alignments is more huge than that of CI-Phones.
Joint CTC-CE Learning

• Difference between CTC CE:
 • loss function
 • additional CTC blank

• Joint CTC-CE
 • a single softmax output layer
 \[\mathcal{L}_{ctcce}(x) = \mathcal{L}_{ctc}(x) + \alpha \cdot \mathcal{L}_{ce}(x) \]

\[
\mathcal{L}_{ce}(x) = -\sum_{i=2}^{K} (1 - p(y_1|x)) t_i \log p(y_i|x)
\]

\[T = \{t_2, t_3, \ldots, t_K\} \text{ denotes the frame-level target labels.} \]

• Need frame-level alignment
 • Still End-to-End?
Experiments

• Data: 1k, 4k, 20k hours
 • a normal test set and a fast speed test set

• Feature: 80-dim FBK
 • stack the consecutive frames(±5)
 • Subsample with 3
Results

- **Baseline**

<table>
<thead>
<tr>
<th>Method</th>
<th>Label</th>
<th>Model Size (MB)</th>
<th>Time/Epoch (Hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLSTM-CE</td>
<td>CD-Phone</td>
<td>155</td>
<td>3.67</td>
</tr>
<tr>
<td>DFSMN-CE</td>
<td>CD-Phone</td>
<td>114</td>
<td>0.50</td>
</tr>
<tr>
<td>DFSMN-CTC</td>
<td>CD-Phone</td>
<td>114</td>
<td>0.58</td>
</tr>
<tr>
<td>DFSMN-CTC</td>
<td>CI-Phone</td>
<td>97</td>
<td>0.43</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Method</th>
<th>Label</th>
<th>Data (Hours)</th>
<th>Test set (WER %)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Normal</td>
<td>Fast</td>
</tr>
<tr>
<td>BLSTM-CE</td>
<td>CD-Phone</td>
<td>1k</td>
<td>19.77</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4k</td>
<td>16.53</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20k</td>
<td>13.97</td>
</tr>
<tr>
<td>DFSMN-CE</td>
<td>CD-Phone</td>
<td>1k</td>
<td>18.19</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4k</td>
<td>14.24</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20k</td>
<td>12.10</td>
</tr>
<tr>
<td>DFSMN-CTC</td>
<td>CI-Phone</td>
<td>1k</td>
<td>17.82</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4k</td>
<td>13.82</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20k</td>
<td>11.46</td>
</tr>
<tr>
<td>DFSMN-CTC</td>
<td>CD-Phone</td>
<td>1k</td>
<td>16.95</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4k</td>
<td>13.13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20k</td>
<td>11.71</td>
</tr>
</tbody>
</table>
Results

• Joint CTC-CE
• CD-Phone

<table>
<thead>
<tr>
<th>Method</th>
<th>Alpha</th>
<th>Test set (WER %)</th>
<th>Normal</th>
<th>Gain</th>
<th>Fast</th>
<th>Gain</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE</td>
<td>-</td>
<td>12.10</td>
<td>-</td>
<td>29.79</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>CTC</td>
<td>-</td>
<td>11.71</td>
<td>3.2%</td>
<td>24.04</td>
<td>19.3%</td>
<td></td>
</tr>
<tr>
<td>Joint CTC</td>
<td>0.1</td>
<td>10.92</td>
<td>9.8%</td>
<td>21.68</td>
<td>27.2%</td>
<td></td>
</tr>
<tr>
<td>CTC CE</td>
<td>0.5</td>
<td>10.67</td>
<td>11.8%</td>
<td>21.98</td>
<td>26.2%</td>
<td></td>
</tr>
<tr>
<td>CTC CE</td>
<td>1.0</td>
<td>10.77</td>
<td>11.0%</td>
<td>20.80</td>
<td>30.1%</td>
<td></td>
</tr>
<tr>
<td>CTC CE</td>
<td>2.0</td>
<td>11.03</td>
<td>8.8%</td>
<td>22.86</td>
<td>23.3%</td>
<td></td>
</tr>
</tbody>
</table>
Results

• Joint CTC-CE
 • accurate alignment
Extending Recurrent Neural Aligner for Streaming End-to-End Speech Recognition in Mandarin

Linhao Dong1,2, Shiyu Zhou1,2, Wei Chen1, Bo Xu1

1Institute of Automation, Chinese Academy of Sciences, China
2University of Chinese Academy of Sciences, China
Motivations

• English->Chinese

• Recurrent Neural Aligner (RNA)
 • streaming recognition

• Improve by:
 • redesign the temporal down-sampling and introduce a powerful convolutional structure.
 • In the decoder, we utilize a regularizer to smooth the output distribution and conduct joint training with a language model.
RNA

- e_u is the encoded vector of z_u
- Diff with CTC in
 - the conditional distribution
 \[
 p(z|x) = \prod_u p(z_u | z_{u-1}^u, x)
 \]
 \[
 p(z|x) = \prod_u p(z_u | x)
 \]
 - RNA obtains the predicted output sequence by simply removing the blanks from alignment, while the CTC model needs to remove first the repeated labels and then the blanks

\[
\begin{align*}
 h &= \text{encoder}(x) \\
 z_u &= \arg \max_{l \in [1, L+1]} (\text{decoder}(h_u, e_{u-1})) \\
 p(y|x) &= \sum_z p(z|x)
\end{align*}
\]
Temporal down-sampling

- Pooling between LSTMs
- Strided convolutional layers
Multiplicative Units

\[g_1 = \sigma(W_1 \ast I + b_1) \]
\[g_2 = \sigma(W_2 \ast I + b_2) \]
\[g_3 = \sigma(W_3 \ast I + b_3) \]
\[u = \tanh(W_4 \ast I + b_4) \]
\[MU(h; W) = g_1 \odot \tanh(g_2 \odot h + g_3 \odot u + b_5) \]
Confidence Penalty

- Label Smoothing
- Obtain better generalization

\[H(p(\theta(z|x))) = - \sum_{u \in [1, U]} \sum_{z_u \in [1, L+1]} p(\theta(z_u|x)) \log(p(\theta(z_u|x))) \]

\[L(\theta) = \sum_{(x, y)} -\log(p(\theta(y|x))) - \lambda \sum_{x} H(p(\theta(z|x))) \]
Joint training with RNN-LM

• Difficult:
 • If we use the shallow fusion in, it’s hard to obtain accurate alignments containing blank for training the LM.
 • If we use the mechanism of joint training with RNN-LM, the blank label hampers the synchronism between the outputs of RNA and the RNN-LM
Joint training with RNN-LM

- Let $h^{\{LM\}}_u$ represents the LM state
 - uses the current output of LM-RNN if $z_{\{u-1\}}$ is non-blank
 - uses the previous output of LM-RNN if $z_{\{u-1\}}$ is blank

\[
g_u = \sigma(W_1 \cdot [s_u; h_u^{LM}] + b_1) \\
s_u^F = [s_u; g_u \odot h_u^{LM}] \\
p(z_u|z_{1}^{u-1}, x) = \text{softmax}(W_2 \cdot s_u^F + b_2)
\]
Exp

- HKUST
Exp

• Temporal down-sampling

<table>
<thead>
<tr>
<th>Down-sampling mechanism</th>
<th>Rate</th>
<th>CER</th>
</tr>
</thead>
<tbody>
<tr>
<td>frame stacking and sub-sampling [5]</td>
<td>1/3</td>
<td>43.19</td>
</tr>
<tr>
<td>pooling{2,4}-width{2,2}</td>
<td>1/4</td>
<td>39.80</td>
</tr>
<tr>
<td>pooling{2,4}-width{3,2}</td>
<td>1/6</td>
<td>34.07</td>
</tr>
<tr>
<td>pooling{1,2,4}-width{2,2,2}</td>
<td>1/8</td>
<td>31.94</td>
</tr>
<tr>
<td>pooling{1,2,4}-width{3,2,2}</td>
<td>1/12</td>
<td>33.53</td>
</tr>
<tr>
<td>pooling{1,2,3,4}-width{2,2,2,2}</td>
<td>1/16</td>
<td>36.63</td>
</tr>
<tr>
<td>conv-stride{2,2,2}</td>
<td>1/8</td>
<td>34.78</td>
</tr>
<tr>
<td>conv-stride{2,2} + pooling{2}-width{2}</td>
<td>1/8</td>
<td>32.62</td>
</tr>
<tr>
<td>conv-stride{2} + pooling{2,4}-width{2,2}</td>
<td>1/8</td>
<td>30.86</td>
</tr>
</tbody>
</table>
Exp

- further extensions on RNA

<table>
<thead>
<tr>
<th>Model-ID</th>
<th>Model</th>
<th>CER</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_1</td>
<td>RNA with the best down-sampling</td>
<td>30.86</td>
</tr>
<tr>
<td>M_2</td>
<td>$M_1 + 1 \times \text{MU}$</td>
<td>29.89</td>
</tr>
<tr>
<td></td>
<td>$M_1 + 1 \times \text{ConvLSTM}$</td>
<td>30.55</td>
</tr>
<tr>
<td></td>
<td>$M_1 + 1 \times \text{GLU}$</td>
<td>30.36</td>
</tr>
<tr>
<td>M_3</td>
<td>$M_2 + \text{Confidence Penalty (} \lambda = 0.2 \text{)}$</td>
<td>29.06</td>
</tr>
<tr>
<td>M_4</td>
<td>$M_3 + \text{Joint training with RNN-LM}$</td>
<td>28.32</td>
</tr>
</tbody>
</table>
Syllable-Based Sequence-to-Sequence Speech Recognition with the Transformer in Mandarin Chinese

Shiyu Zhou1,2, Linhao Dong1,2, Shuang Xu1, Bo Xu1

1Institute of Automation, Chinese Academy of Sciences
2University of Chinese Academy of Sciences
Motivation

• Transformer achieves a state-of-the-art BLEU on NMT
• Extend it to speech as the basic architecture of sequence-to-sequence attention-based model on Mandarin Chinese ASR
• Investigate a comparison between syllable based model and context-independent phone based model
 • syllables have the advantage of avoiding OOV problem
• A greedy cascading decoder with the Transformer is proposed for mapping CI-phoneme sequences and syllable sequences into word sequences
Transformer model

- the same as sequence-to-sequence attention-based models except relying entirely on self-attention and position-wise
 - Encoder
 - Decoder
 - Multi-head attention

\[
\text{Attention}(Q, K, V) = \text{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V
\]

\[
\text{MultiHead}(Q, K, V) = \text{Concat}(\text{head}_1, \ldots, \text{head}_h)W^O
\]

where \(\text{head}_i = \text{Attention}(QW_i^Q, KW_i^K, VW_i^V)\)
Transformer model

- MHA and position-wise, fully connected layers for both the encode and decoder
- positional encodings
Greedy cascading decoder

• First, the best sub-word unit sequence s is calculated by the Transformer from observation X to sub-word unit sequence with beam size β.

• Then, the best word sequence W is chosen by the Transformer from sub-word unit sequence to word sequence with beam size γ.

$$\bar{W} = \arg\max_w Pr(W|X)$$

$$= \arg\max_w \sum_s Pr(W|s)Pr(s|X)$$

$$\approx \arg\max_w Pr(W|s)Pr(s|X)$$
Exp

- HKUST
- CI-phoneme: 122
- syllable: 1388
Exp

• CI-phoneme and syllable based model

Table 2: Comparison of CI-phoneme and syllable based model with the Transformer on HKUST datasets in CER (%).

<table>
<thead>
<tr>
<th>sub-word unit</th>
<th>model</th>
<th>CER</th>
</tr>
</thead>
<tbody>
<tr>
<td>CI-phonemes</td>
<td>D512-H8</td>
<td>32.94</td>
</tr>
<tr>
<td></td>
<td>D1024-H16</td>
<td>30.65</td>
</tr>
<tr>
<td></td>
<td>D1024-H16 (speed perturb)</td>
<td>30.72</td>
</tr>
<tr>
<td>Syllables</td>
<td>D512-H8</td>
<td>31.80</td>
</tr>
<tr>
<td></td>
<td>D1024-H16</td>
<td>29.87</td>
</tr>
<tr>
<td></td>
<td>D1024-H16 (speed perturb)</td>
<td>28.77</td>
</tr>
</tbody>
</table>
Exp

- Comparison with previous works

Table 3: CER (%) on HKUST datasets compared to previous works.

<table>
<thead>
<tr>
<th>model</th>
<th>CER</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSTMP-9\times800P512-F444 [24]</td>
<td>30.79</td>
</tr>
<tr>
<td>CTC-attention+joint dec. (speed perturb., one-pass)</td>
<td>28.9</td>
</tr>
<tr>
<td>+VGG net</td>
<td>28.0</td>
</tr>
<tr>
<td>+RNN-LM (separate) [9]</td>
<td></td>
</tr>
<tr>
<td>CI-phonemes-D1024-H16</td>
<td>30.65</td>
</tr>
<tr>
<td>Syllables-D1024-H16 (speed perturb)</td>
<td>28.77</td>
</tr>
</tbody>
</table>
Exp

• Comparison of different frame rates

Table 4: Comparison of different frame rates on HKUST datasets in CER (%).

<table>
<thead>
<tr>
<th>model</th>
<th>frame rate</th>
<th>CER</th>
</tr>
</thead>
<tbody>
<tr>
<td>CI-phonemes-D1024-H16 (speed perturb)</td>
<td>30ms</td>
<td>30.72</td>
</tr>
<tr>
<td></td>
<td>50ms</td>
<td>31.68</td>
</tr>
<tr>
<td></td>
<td>70ms</td>
<td>33.96</td>
</tr>
<tr>
<td>Syllables-D1024-H16 (speed perturb)</td>
<td>30ms</td>
<td>28.77</td>
</tr>
<tr>
<td></td>
<td>50ms</td>
<td>29.36</td>
</tr>
<tr>
<td></td>
<td>70ms</td>
<td>32.22</td>
</tr>
</tbody>
</table>